Towards an Autonomous MRNet

Dorian Arnold
Department of Computer Science
University of New Mexico

Paradyn/Dyninst Meeting
University of Maryland, College Park
April 27-28, 2009
My Research Goals

Make HPC systems easier to use without sacrificing efficiency or reliability

- Scalable computational models for applications and tools
 - Communication
 - Data analysis
 - HPC middleware

- Autonomous systems (overlay networks)
 - Self-monitoring
 - Self-reconfiguring
 - Self-healing
 - Self-optimizing

- Fault-tolerance
 - New reliability models & mechanisms
- HPC Tools

Let experts operate within their fields of expertise!
In the beginning was MRNet

- Scalable data multicast and aggregation
- Flexible topologies
- User-defined filters
- Trade-off: extra processing nodes for performance
and MRNet only supported static topologies
and MRNet did not tolerate failures
And then there was MRNet 2.0

• Event detection service
 – Failure detection
 – Dynamic topology configuration
 – New MRNet instantiation protocol

• State composition for failure recovery
Today’s Talk

• Towards an autonomous MRNet
 – Self-monitoring
 – Self-healing
 – Self-configuring
 – Self-optimizing
Event Detection Service (EDS) thread
 – In each MRNet process

 – Passive detection of asynchronous events
 • Failure events for failure detection
 • Connection events for dynamic reconfiguration

 – Connection-based (TCP) mechanisms
 • Monitor watch list of event sockets
 – Listening socket
 – New Failure Detection Connection protocol message
 – New Data Connection protocol message
• Each process monitors its peers (parent and children)

• Connect to peer EDS

• **Send** New Failure Detection Connection message

• Add failure detection event sockets to watch list

• Socket error → peer failure
Upon Failure Detection …

1. The MRNet tree must be reconfigured

2. MRNet must recover any lost state
 (that it can)
At initialization or after failures, orphan connect to new parent’s EDS

- **Send** New Data Connection **protocol** message
- Child/parent establish data socket
Use tree structure for efficient global dissemination

• Failure report:
 • 32 bits: {failed rank}
• Reconfiguration report:
 • 64 bits: {child rank, parent rank}
 • Disconnected subtrees intact

• Disseminating process sends to parent and children

• Receiving processes send to peers other than source
MRNet Self-healing: State Recovery

- **State Compensation**
 - compensate for lost state using inherently redundant information from surviving processes

 - Avoid overhead of explicit data replication

- **State Composition**
 - Lightweight mechanism for idempotent aggregations

 - Reintegrated orphans send filter state to new parent
State Composition Interface

outPacket get_FilterState(void ** inFilterState);

- Inputs pointer reference to stream’s filter state
- Outputs “packetized” version of filter state

int load_FilterState(const char * inSharedObject
 const char * inFilterFunction);

- Used to dynamically load new filter functions
- Also queries for get_FilterState routine
 - If found, filter is recoverable
What’s Next?

Can overlay networks for high performance data analysis dynamically and autonomously adapt to application-specific, time-varying workloads?

… without user/application input

– H/w characteristics
– Performance monitoring
– Performance modeling
– Decision processes
What’s Next?

Can overlay networks for high performance data analysis dynamically and autonomously adapt to application-specific, time-varying workloads?

… with possible quality-of-service constraints

– Priority
– Performance
– Reliability
– …
Hierarchical Modeling
MRNet Self-optimization

- Hardware characteristics
- Runtime performance
- Performance models
- Decision processes
- Optimized topologies
Other Issues

- Monitoring infrastructure
- QoS
- Many MRNets
 - Simplicity
 - Protection
 - No interference
 - Ease of deployment

or 1
 - Faster startup
 - Better utilization
 - Help address collocation problems
What this means to you

• Simpler, yet better, MRNet
 – Doing (much) more with less!

• An excellent vehicle for data-intensive information analysis
 – Tools and applications!
Questions?