AutomaDeD: Scalable Root Cause Analysis

ParaDyn/DynInst Week
March 26, 2012
AutomaDeD (DSN ’10): Fault detection & diagnosis in MPI applications

- Collect traces using MPI wrappers
 - Before and after call

```c
MPI_Send(...) {
  tracesBeforeCall();
  PMPI_Send(...);
  tracesAfterCall();
  ...
}
```

- Collect call-stack info
- Time measurements

Find offline:
- phase
- task
- code region
Modeling Timing and Control-Flow Structure

- **States:**
 1. (a) code of MPI call, or
 2. (b) code between MPI calls

- **Edges:**
 1. Transition probability
 2. Time distribution

Find offline:

- phase
- task
- code region

Semi-Markov Models (SMM)

- **States:**
 - S_1
 - S_2
 - S_3

- **Edges:**
 - S_1 to S_1, S_2 to S_2, S_3 to S_3

Example:

- Send() after Send with probability 0.6
Detection of Anomalous Phase / Task / Code-Region

- Dissimilarity between models $Diss (SMM_1, SMM_2) \geq 0$
- Cluster the models
 - Find unusual cluster(s)
 - Use known ‘normal’ clustering configuration

Find offline:
- phase → task → code region

Master-slave program

Unusual cluster
Faulty tasks
Making AutomaDeD scalable: What was necessary?

1. Replace offline clustering with fast online clustering
 • Offline clustering is slow
 • Requires data to be aggregated to a single node
AutomaDeD uses CAPEK for scalable clustering

- CAPEK algorithm scales logarithmically with number of processors in the system
 - Runs in less than half a second at with 131k cores
 - Feasible to cluster on trans-petascale and exascale systems
- CAPEK uses aggressive sampling techniques
 - This induces error in results, but error is 4-7%
Making AutomaDeD scalable: What was necessary?

1. Replace offline clustering with fast online clustering

2. Scalable outlier detection
 - By nature, sampling is unlikely to include outliers in the results
 - Need something to compensate for this
 - Can’t rely on the “small” cluster anymore
We have developed scalable outlier detection techniques using CAPEK

Clustering Approach

1. Perform clustering using CAPEK
2. Find distance from each task to its medoid
3. Normalize distances using within-cluster standard deviation
4. Find top-k outliers sorting tasks based on the largest distances

- The algorithm is fully distributed
- Doesn’t require a central component to perform the analysis
- Complexity $O(\log \#\text{tasks})$
Making AutomaDeD scalable: What was necessary?

1. Replace offline clustering with fast online clustering
2. Scalable outlier detection
3. Replace glibc backtrace with LLNL callpath library
 - Glibc backtrace functions are slow, require parsing
 - Callpath library uses module-offset representation
 - Can transfer canonical callpaths at runtime
 - Can do fast callpath comparison (pointer compare)
Making **AutomaDeD** scalable: What was necessary?

1. Replace offline clustering with fast online clustering
2. Scalable outlier detection
3. Replace glibc backtrace with LLNL callpath library
 - Glibc backtrace functions are slow, require parsing
 - Callpath library uses module-offset representation
 - Can transfer canonical callpaths at runtime
 - Can do fast callpath comparison (pointer compare)
4. Graph compression for Markov Models
 - MM’s contain a lot of noise
 - Noisy models can slow comparison and obfuscate problems
Too Many Graph Edges: The Curse of Dimensionality

Sample SMM graph of NAS BT run

~ 200 edges in total

- Too many edges = Too many dimensions
- Distances between points tend to become almost equal
- Poor performance of clustering analysis
Example of Graph Compression

Sample code

```c
MPI_Init() // comp code 1
MPI_Gather() // comp code 2
for (...) {
    // comp code 3
    MPI_Send() // comp code 4
    MPI_Recv() // comp code 5
}
// comp code 6
MPI_Bcast() // comp code 7
MPI_Finalize()
```

Semi-Markov Model

```
Init
  ↓
Comp 1
  ↓
Gather
  ↓
Comp 2,3
  ↓
Send
  ↓
Comp 4
  ↓
Recv
  ↓
Comp 5,6,3
  ↓
Bcast
  ↓
Comp 7
  ↓
Finalize
```

Compressed Semi-Markov Model

```
Init
  ↓
Send
  ↓
Comp 5,6,3
  ↓
Finalize
```

Sample code

```
Semi-Markov Model = Compressed Semi-Markov Model
```
We are developing AutomaDeD into a framework for many types of distributed analysis

Our graph compression and scalable outlier detection enables automatic bug isolation in:

- ~ 6 seconds with 6,000 tasks on Intel hardware
- ~ 18 seconds at 103,000 cores on BG/P

Logarithmic scaling implies billions of tasks will still take less than 10 seconds

We are developing new on-node performance models to target resilience problems as well as debugging.
We have added probabilistic root cause diagnosis to AutomaDeD

- Scalable AutomaDeD can tell us:
 - Anomalous processes
 - Anomalous transitions in the MM

- We want to know what code is likely to have caused the problem
 - Need more sophisticated analysis for this
 - Need distributed dependence information to understand distributed hangs
Progress Dependence

- Very simple notion of dependence through MPI operations
- Support collectives and point to point
 - MPI_Isend, Irecv running dependence through completion operation (MPI_Wait, Waitall, etc)
- Similar to postdominance, but there is no requirement that there be an exit node
 - Exit nodes may not be there in the dynamic call tree, especially if there is a fault

Sample code

10 // Computation code ...
11 MPI_Bcast(..., MPI_COMM_WORLD);
12 // ...
13 if (...) {
14 // ...
15 MPI_Reduce(..., comm_1);
16 // ...
17 MPI_Barrier(comm_1);
18 } else {
19 // ...
20 MPI_Bcast(..., comm_2);
21 }
22 // ...

Progress dependence graph

- Task a
- Task group B
- Task group C
- Task group D
- Task group E

Computation code

- Bcast
- Reduce
- Barrier
Building the Progress Dependence Graph (PDG)

- We build the PDG using a parallel reduction
- We estimate dependence edges between tasks using control flow stats from our Markov Models
- PDG allows us to find the least-progress (LP) process

<table>
<thead>
<tr>
<th>No</th>
<th>Task x</th>
<th>Task y</th>
<th>Union</th>
<th>Reasoning</th>
<th>OR operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$i \rightarrow j$</td>
<td>null</td>
<td>$i \rightarrow j$</td>
<td>first dependence dominates</td>
<td>$1 + 0 = 1$</td>
</tr>
<tr>
<td>2</td>
<td>$i \rightarrow j$</td>
<td>$i \rightarrow j$</td>
<td>$i \rightarrow j$</td>
<td>same dependence</td>
<td>$1 + 1 = 1$</td>
</tr>
<tr>
<td>3</td>
<td>$i \leftarrow j$</td>
<td>$i \leftarrow j$</td>
<td>$i \leftarrow j$</td>
<td>same dependence</td>
<td>$2 + 2 = 2$</td>
</tr>
<tr>
<td>4</td>
<td>$i \rightarrow j$</td>
<td>$i \leftarrow j$</td>
<td>$i?j$</td>
<td>undefined</td>
<td>$1 + 2 = 3$</td>
</tr>
<tr>
<td>5</td>
<td>null</td>
<td>null</td>
<td>null</td>
<td>no dependence</td>
<td>$0 + 0 = 0$</td>
</tr>
</tbody>
</table>

Table 2: Some examples of dependence unions.
Our distributed pipeline enables fast root cause analysis

- Full process has $O(\log(P))$ complexity
- Distributed analysis requires < 0.5 sec on 32,768 processes
- Gives programmers insight into the exact lines that could have caused a hang.
- We use DynInst’s backward slicing at the root to find likely causes
We have used AutomaDeD to find performance problems in a real code

- Discovered cause of elusive hang in I/O phase of ddcMD molecular dynamics simulation at scale
- Only occurred with 7,000+ processes