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The Tweet Stream 
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Tree-Based Overlay Networks (TBONs) 

 

o Scalable multicast 

 

o Scalable gather 

 

o Scalable data aggregation 
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MRNet – Multicast / Reduction Network 

o General-purpose TBON 
API 
o  Network: user-defined topology 

o  Stream: logical data channel 

o to a set of back-ends 

o multicast, gather, and custom reduction 

o  Packet: collection of data 

o  Filter: stream data operator 

o synchronization 

o transformation 

o Widely adopted by HPC 
tools 
o CEPBA toolkit  

o Cray ATP & CCDB 

o Open|SpeedShop & CBTF 

o STAT 

o TAU 
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TBON Computation 
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Ideal Characteristics: 
o Filter output size 
constant or decreasing 
 
o Computation rate similar 
across levels 
 
o Adjustable for load 
balance 
 

 Data Size:  

10MB per BE 

Packet Size:  

 ≤10 MB 

Packet Size: 

≤10 MB 

~10 sec ~40 sec 

… 4x 

~10 sec 

~10 sec 

~10 sec 

… 

Data to process:  

e.g. 40 MB 
Total Time:  ~30 sec Total Time:  ~60 sec 



Why GPUs? 
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o Natural fit 
 
o Increase compute power 
 
o Trade computation for  
   bandwidth 

o Derived summaries 
o Compute and send ∆ data 
o Compression algorithms 
(e.g. LZO, zlib, etc.) 

F(x1,…,xn) 



Goal: Find regions that meet minimum 

density and spatial distance characteristics 

The two parameters that determine if a 

point is in a cluster is Epsilon (Eps), and 

MinPts 

If the number of points in Eps is > MinPts, 

the point is a core point. 

For every discovered point, this same 

calculation is performed until the cluster is 

fully expanded 

Clustering Example (DBSCAN[1]) 
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Eps Min Points 

Min Pts: 3 

[1] M. Ester et. al., A density-based algorithm for discovering clusters in large spatial databases with 

noise, (1996) 



Scaling DBSCAN 

o PDBSCAN[2] 

oQuality equivalent to single DBSCAN 

o Linear speedup up to 8 nodes 

o  DBDC[3] 

o Sacrifices quality 

o ~30x speedup on 15 nodes 

o CUDA-Dclust[4] 

oQuality equivalent to DBSCAN 

o ~15x faster on 1 node 
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[2] X. Xu et. al., A fast Parallel Clustering Algorithm for Large Spatial Databases (1999) 

[3] E. Januzaj et. al., DBDC: Density Based Distributed Clustering (2004) 

[4] C. Bohm et al., Density-based clustering using graphics processors (2009) 



Tree-Based Clustering: Mr. Scan 
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Algorithm Steps 

 

SpatialDecomp: CPU(@ FE) 

 

DBSCAN: CPU or GPU(@ BE) 

 

DrawBoundBox: CPU or GPU 

 

MergeCluster: CPU (x #levels) 

MergeCluster 



Spatial Decomposition 
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1. Start with an input of Spatially Referenced points 

2. Partition the region into equal sized density regions across one dimension 

3. Add the shadow region area of one Epsilon to all density regions 

Partition #1 Partition #2 Partition #3 

Eps 



DBSCAN - CPU 

o Run on local slice for 

each BE 

o R* tree 

o Start at random point 

o Cluster w/ respect to  

   Eps, MinPts 

o Complexity: O(n log n) 
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   R* Tree Example 



GPU DBSCAN Filter 
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Candidate #1 

Candidate #2 
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Candidate #N 

Candidate Clusters are potential 

clusters being explored concurrently in 

the GPU 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of cluster candidates is 

limited by GPU Characteristics 

State array stores the current state of 

points in the search space 

States 

GPU DBSCAN operates similarly to the CPU 

version with two exceptions 

Coarse grain 

search space 

Chain Collisions 

causing cluster 

merges  

CUDA-DCLUST  [09 – Böhm]   



DrawBoundBox – CPU | | GPU 
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MergeBoundBox - CPU 

o Checks for merge if box within shadow 

o At least one point MUST be in common 

o Iterate through ALL points in right cluster 
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Match! 



The Tweet Stream 
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Source: Twitter, Map: About.com 



Evaluation 

o Dataset: 1-3 “Tweet Days” 

o Measuring: 

o Time to completion 

oQuality compared to single-threaded DBSCAN 

o Algorithms: 

o Single-Threaded DBSCAN 

oDBDC 

oMRNet w/DBSCAN filter 

oMRNet w/DBSCAN GPU filter 
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Results 
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Results 
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Results 
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Quality 
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# Backend Nodes 

Quality of 1 tweet day 

Mr. Scan w/CPU; 0 internal

nodes

Mr. Scan w/CPU; 2 internal

nodes

Mr. Scan w/GPU; 0 internal

nodes

Mr. Scan w/GPU; 2 internal

nodes

DBDC



Future Work 

o Scaling Issues 

o Spatial Decomposition 

oMerging Algorithm 
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2D Spatial Decomposition 
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- 1D Spatial Decomposition has some severe limitations 

7pts 11pts 

- Splits can have wildly differing point counts 

- Number of splits limited by Epsilon  

Eps 

- 2D Spatial Decomposition would allow for more Splits with more 

equal point counts 



Merging  Algorithm 

o Bounding Box 

oNo quality degradation 

o Limits iteration, but still 

iterates 
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oPossible Alternative: 

Concave Hull 

oDBSCAN on border 

points 

o Avoids iteration 

oConstant output size 

oO(n2)  on BEs 

 

 



Use Cases 

o Twitter Data 

o “Flu Tweets” 

oMood/Topic clustering 

o Riot prediction 

o Any Spatial data 

oCurrently limited to 2D 
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Conclusion 

o DBSCAN performance scales 

o Quality able to be maintained 

o Goal: Scale O(100,000 nodes) 
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