
Paradyn Project

Paradyn / Dyninst Week

College Park, Maryland

March 26-28, 2012

Tree-Based Density Clustering using

Graphics Processors

Evan Samanas and Ben Welton

A First Marriage of MRNet and GPUs

The Tweet Stream

2 Tree-Based Density Clustering using Graphics Processors

`

`

v
v

Source: Twitter, Map: About.com

3 Tree-Based Density Clustering using Graphics Processors

Tree-Based Overlay Networks (TBONs)

o Scalable multicast

o Scalable gather

o Scalable data aggregation

FE

… … …
BE

app app app app

BE

app app app app

BE

app app app app

BE

app app app app

CP CP

CP CP CP CP

4 Tree-Based Density Clustering using Graphics Processors

MRNet – Multicast / Reduction Network

o General-purpose TBON
API
o Network: user-defined topology

o Stream: logical data channel

o to a set of back-ends

o multicast, gather, and custom reduction

o Packet: collection of data

o Filter: stream data operator

o synchronization

o transformation

o Widely adopted by HPC
tools
o CEPBA toolkit

o Cray ATP & CCDB

o Open|SpeedShop & CBTF

o STAT

o TAU

FE

… … …
BE

app app app app

BE

app app app app

BE

app app app app

BE

app app app app

CP CP

CP CP CP CP

F(x1,…,xn)

TBON Computation

5 Tree-Based Density Clustering using Graphics Processors

FE

BE

app app app app

BE

app app app app

BE

app app app app

CP CP

BE

app app app app

Ideal Characteristics:
o Filter output size
constant or decreasing

o Computation rate similar
across levels

o Adjustable for load
balance

 Data Size:

10MB per BE

Packet Size:

 ≤10 MB

Packet Size:

≤10 MB

~10 sec ~40 sec

… 4x

~10 sec

~10 sec

~10 sec

…

Data to process:

e.g. 40 MB
Total Time: ~30 sec Total Time: ~60 sec

Why GPUs?

6 Tree-Based Density Clustering using Graphics Processors

FE

… … …
BE

app app app app

BE

app app app app

BE

app app app app

CP CP

CP CP CP CP

BE

app app app app

o Natural fit

o Increase compute power

o Trade computation for
 bandwidth

o Derived summaries
o Compute and send ∆ data
o Compression algorithms
(e.g. LZO, zlib, etc.)

F(x1,…,xn)

Goal: Find regions that meet minimum

density and spatial distance characteristics

The two parameters that determine if a

point is in a cluster is Epsilon (Eps), and

MinPts

If the number of points in Eps is > MinPts,

the point is a core point.

For every discovered point, this same

calculation is performed until the cluster is

fully expanded

Clustering Example (DBSCAN[1])

7 Tree-Based Density Clustering using Graphics Processors

Eps Min Points

Min Pts: 3

[1] M. Ester et. al., A density-based algorithm for discovering clusters in large spatial databases with

noise, (1996)

Scaling DBSCAN

o PDBSCAN[2]

oQuality equivalent to single DBSCAN

o Linear speedup up to 8 nodes

o DBDC[3]

o Sacrifices quality

o ~30x speedup on 15 nodes

o CUDA-Dclust[4]

oQuality equivalent to DBSCAN

o ~15x faster on 1 node

 8 Tree-Based Density Clustering using Graphics Processors

[2] X. Xu et. al., A fast Parallel Clustering Algorithm for Large Spatial Databases (1999)

[3] E. Januzaj et. al., DBDC: Density Based Distributed Clustering (2004)

[4] C. Bohm et al., Density-based clustering using graphics processors (2009)

Tree-Based Clustering: Mr. Scan

9 Tree-Based Density Clustering using Graphics Processors

FE

BE BE BE

CP CP

BE

DBSCAN

Algorithm Steps

SpatialDecomp: CPU(@ FE)

DBSCAN: CPU or GPU(@ BE)

DrawBoundBox: CPU or GPU

MergeCluster: CPU (x #levels)

MergeCluster

Spatial Decomposition

10 Tree-Based Density Clustering using Graphics Processors

1. Start with an input of Spatially Referenced points

2. Partition the region into equal sized density regions across one dimension

3. Add the shadow region area of one Epsilon to all density regions

Partition #1 Partition #2 Partition #3

Eps

DBSCAN - CPU

o Run on local slice for

each BE

o R* tree

o Start at random point

o Cluster w/ respect to

 Eps, MinPts

o Complexity: O(n log n)

11 Tree-Based Density Clustering using Graphics Processors

A B

C D E

 R* Tree Example

GPU DBSCAN Filter

12 Tree-Based Density Clustering using Graphics Processors

Candidate #1

Candidate #2

.

.
Candidate #N

Candidate Clusters are potential

clusters being explored concurrently in

the GPU

Number of cluster candidates is

limited by GPU Characteristics

State array stores the current state of

points in the search space

States

GPU DBSCAN operates similarly to the CPU

version with two exceptions

Coarse grain

search space

Chain Collisions

causing cluster

merges

CUDA-DCLUST [09 – Böhm]

DrawBoundBox – CPU | | GPU

13 Tree-Based Density Clustering using Graphics Processors

MergeBoundBox - CPU

o Checks for merge if box within shadow

o At least one point MUST be in common

o Iterate through ALL points in right cluster

14 Tree-Based Density Clustering using Graphics Processors

Match!

The Tweet Stream

15 Tree-Based Density Clustering using Graphics Processors

`

`

Source: Twitter, Map: About.com

Evaluation

o Dataset: 1-3 “Tweet Days”

o Measuring:

o Time to completion

oQuality compared to single-threaded DBSCAN

o Algorithms:

o Single-Threaded DBSCAN

oDBDC

oMRNet w/DBSCAN filter

oMRNet w/DBSCAN GPU filter

16 Tree-Based Density Clustering using Graphics Processors

Results

0

5

10

15

20

25

30

One Day Three Day

T
im

e
 (

H
o

u
rs

)

ELKI

Single Thread

CPU - MR. Scan

GPU - MR. Scan

17 Tree-Based Density Clustering using Graphics Processors

Results

0

5000

10000

15000

20000

25000

1x4 1x16 1x2x16

R
u

n
n

in
g
 T

im
e
 (

se
c
)

Topology

Decomp

GPU Run

CPU Run

18 Tree-Based Density Clustering using Graphics Processors

Results

19 Tree-Based Density Clustering using Graphics Processors

Quality

20 Tree-Based Density Clustering using Graphics Processors

70%

75%

80%

85%

90%

95%

100%

0 10 20 30 40 50 60

Q
u

a
li
ty

Backend Nodes

Quality of 1 tweet day

Mr. Scan w/CPU; 0 internal

nodes

Mr. Scan w/CPU; 2 internal

nodes

Mr. Scan w/GPU; 0 internal

nodes

Mr. Scan w/GPU; 2 internal

nodes

DBDC

Future Work

o Scaling Issues

o Spatial Decomposition

oMerging Algorithm

21 Tree-Based Density Clustering using Graphics Processors

2D Spatial Decomposition

22 Tree-Based Density Clustering using Graphics Processors

- 1D Spatial Decomposition has some severe limitations

7pts 11pts

- Splits can have wildly differing point counts

- Number of splits limited by Epsilon

Eps

- 2D Spatial Decomposition would allow for more Splits with more

equal point counts

Merging Algorithm

o Bounding Box

oNo quality degradation

o Limits iteration, but still

iterates

23 Tree-Based Density Clustering using Graphics Processors

oPossible Alternative:

Concave Hull

oDBSCAN on border

points

o Avoids iteration

oConstant output size

oO(n2) on BEs

Use Cases

o Twitter Data

o “Flu Tweets”

oMood/Topic clustering

o Riot prediction

o Any Spatial data

oCurrently limited to 2D

24 Tree-Based Density Clustering using Graphics Processors

Conclusion

o DBSCAN performance scales

o Quality able to be maintained

o Goal: Scale O(100,000 nodes)

25 Tree-Based Density Clustering using Graphics Processors

