Tree-Based Density Clustering using Graphics Processors

A First Marriage of MRNet and GPUs

Evan Samanas and Ben Welton Paradyn Project

Paradyn / Dyninst Week College Park, Maryland March 26-28, 2012

The Tweet Stream

5h

İnst

MRNet – Multicast / Reduction Network

- Network: user-defined topology
- Stream: logical data channel
 - \circ to a set of back-ends
 - o multicast, gather, and custom reduction
- Packet: collection of data
- Filter: stream data operator
 - \circ synchronization
 - o transformation

Widely adopted by HPC tools

- CEPBA toolkit
- Cray ATP & CCDB
- Open|SpeedShop & CBTF
- o **STAT**
- o TAU

nst

Why GPUs?

- \circ Natural fit
- Increase compute power
- Trade computation for bandwidth
 - \circ Derived summaries
 - Compute and send ∆ data
 Compression algorithms
 (e.g. LZO, zlib, etc.)

Inst

Clustering Example (DBSCAN^[1])

Scaling DBSCAN

• PDBSCAN^[2]

- Quality equivalent to single DBSCAN
- Linear speedup up to 8 nodes

• DBDC^[3]

- \circ Sacrifices quality
- ~30x speedup on 15 nodes

O CUDA-Dclust^[4]

 \circ Quality equivalent to DBSCAN

○ ~I5x faster on I node

[2] X. Xu et. al., A fast Parallel Clustering Algorithm for Large Spatial Databases (1999)

- [3] E. Januzaj et. al., DBDC: Density Based Distributed Clustering (2004)
- [4] C. Bohm et al., Density-based clustering using graphics processors (2009)

₀ Dyn ◎ inst

Spatial Decomposition

- 1. Start with an input of Spatially Referenced points
- 2. Partition the region into equal sized density regions across one dimension
- 3. Add the shadow region area of one Epsilon to all density regions

DBSCAN - CPU

- Run on local slice for each BE
- \circ R* tree
- \odot Start at random point
- Cluster w/ respect to
 Eps, MinPts
- \circ Complexity: O(n log n)

R* Tree Example

GPU DBSCAN Filter

Candidate Clusters are potential clusters being explored concurrently in the GPU State array stores the current state of points in the search space

States Candidate #1 Chain Collisions Coarse grain causing cluster search space Candidate #2 merges Candidate #N GPU DBSCAN operates similarly to the CPU

Number of cluster candidates is limited by GPU Characteristics

CUDA-DCLUST [09 - Böhm]

version with two exceptions

12

DrawBoundBox – CPU | | GPU

Tree-Based Density Clustering using Graphics Processors

Dyn inst

13

MergeBoundBox - CPU

- \odot Checks for merge if box within shadow
- At least one point MUST be in common
- \odot Iterate through ALL points in right cluster

The Tweet Stream

5h

İnst

Evaluation

- Dataset: I-3 "Tweet Days"
- Measuring:
 - Time to completion
 - \circ Quality compared to single-threaded DBSCAN
- O Algorithms:
 - o Single-Threaded DBSCAN
 - DBDC
 - O MRNet w/DBSCAN filter
 - O MRNet w/DBSCAN GPU filter

Results

Results

Results

Tree-Based Density Clustering using Graphics Processors

19

nst

Quality

Quality of I tweet day

Tree-Based Density Clustering using Graphics Processors

20

ınst

Future Work

\circ Scaling Issues

- Spatial Decomposition
- Merging Algorithm

2D Spatial Decomposition

- 1D Spatial Decomposition has some severe limitations
 - Splits can have wildly differing point counts
 - Number of splits limited by Epsilon
 - 2D Spatial Decomposition would allow for more Splits with more equal point counts

Tree-Based Density Clustering using Graphics Processors

22

Merging Algorithm

Tree-Based Density Clustering using Graphics Processors

23

Use Cases

o Twitter Data

- o "Flu Tweets"
- Mood/Topic clustering
 Riot prediction

\circ Any Spatial data

 \odot Currently limited to 2D

Conclusion

- DBSCAN performance scales
- Quality able to be maintained
- o Goal: Scale O(100,000 nodes)

